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A new theoretical formulation is developed for the effects of surfactants on mass 
transport across the dynamic interface of a bubble which undergoes spherically 
symmetric volume oscillations. Owing to the presence of surfactants, the Henry's 
law boundary condition is no longer applicable; it is replaced by a flux boundary 
condition that features an interfacial resistance that depends on the concentration 
of surfactant molecules on the interface. The driving force is the disequilibrium 
partitioning of the gas between free and dissolved states across the interface. As in 
the clean surface problem analysed recently (Fyrillas & Szeri 1994), the transport 
problem is split into two parts: the smooth problem and the oscillatory problem. The 
smooth problem is treated using the method of multiple scales. An asymptotic solution 
to the oscillatory problem, valid in the limit of large Piclet number, is developed 
using the method of matched asymptotic expansions. By requiring that the outer 
limit of the inner approximation match zero, the splitting into smooth and oscillatory 
problems is determined unambiguously in successive powers of 9-'/2, where 9 is the 
Piclet number. To leading order, the clean surface solution is recovered. Continuing 
to higher order it is shown that the concentration field depends on R 1 T 1 I 2 ,  where RI 
is the (dimensionless) interfacial resistance associated with the presence of surfactants. 
Although the influence of surfactants appears at higher order in the small parameter, 
surfactants are shown to have a very significant effect on bubble growth rates owing 
to the fact that the magnitude of RI is approximately the same as the magnitude of 
9''* at conditions of practical interest. Hence the higher-order 'corrections' happen 
numerically to be of the same magnitude as the leading-order, clean surface problem. 
This is the fundamental reason for major increases in the bubble growth rates 
associated with the addition of surfactants. This is in contrast to the case of a still, 
surfactant-covered bubble, in which the first-order correction to the growth rate is of 
order RI 9-' and presents a 9-'/2 correction. Finally, although existing experimental 
results have shown only enhancement of bubble growth in the presence of a surfactant 
the present theory suggests that it is possible for a surfactant, characterized by weak 
dependence of interfacial resistance on surface concentration, to inhibit rather than 
enhance the growth of bubbles by rectified diffusion. 

1. Introduction 
It is of fundamental importance in the study of bubbles to understand the exchange 

of gases across the interface between the free state within the bubble and the dissolved 
state outside the bubble. It is well known that if a bubble undergoes volume 
oscillations, the usual tendency to dissolve in undersaturated liquids may be reversed 
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through a phenomenon known as rectified diffusion. In addition, the clear indications 
of preliminary experimental work are that surfactants have a very pronounced effect 
on the growth of bubbles by rectified diffusion. However no theoretical explanation 
has yet been developed that accounts for the dramatic increase in bubble growth 
rates via rectified diffusion in the presence of surfactants. 

The phenomenon of rectified diffusion was first identified by Blake (1949), who 
used a quasi-static solution of the diffusion problem to compare with his experimental 
results. Following Blake, many analyses of the phenomenon were undertaken, re- 
stricted either to the assumption of infinitesimal bubble oscillations or of equilibrium 
exchange of gas, or both. A detailed review of this work can be found in Plesset & 
Prosperetti (1977). Recently, Fyrillas & Szeri (1994) (hereinafter referred to as FS) re- 
viewed more recent work and developed a theoretical description of the phenomenon 
of rectified diffusion across a clean bubble surface that suffers from neither restriction. 

Still, however, satisfactory agreement between theory and experiment remains 
elusive. The theory tends to underpredict bubble growth rates, particularly for large 
bubbles. The discrepancy was first attributed to bubble resonances; however the 
importance of resonances has been shown to be an artifact of the polytropic model 
(FS). Crum (1980), Crum & Hansen (1982) and Church (1988) speculated that the 
ubiquitous presence of surfactants might be the reason for the disagreement. This 
is supported by experimental evidence reported by Crum (1980, 1984). Bubbles 
intentionally contaminated by surfactants were observed to have much larger growth 
rates when undergoing rectified diffusion. 

In the absence of surfactant contamination, rectified diffusion is brought about in 
the following way. When a bubble undergoing volume oscillations is in the collapsed 
phase, the internal gas pressure is high - this leads to a flow of gas out of the bubble 
through the interface. When the bubble is in the expanded phase, the internal pressure 
is low and the bubble gains gas from the surrounding liquid through the dynamic 
interface. However, these two phenomena may not be in balance; bubble growth is 
favoured because the pressure is roughly proportional to R-4 where R is the bubble 
radius and q is the polytropic exponent. 

When there is, in addition, interfacial resistance associated with the presence 
of surfactant, the imbalance that leads to rectified diffusion may be exacerbated. 
Because the surface area of the bubble changes by a large amount over a typical 
bubble oscillation, the surface concentration of surfactant molecules is highly variable. 
When the bubble is contracted, and there is a tendency of the bubble to lose gas, 
the interfacial resistance is high as a consequence of high surface concentration of 
surfactant. In contrast, the interfacial resistance is low when the bubble is expanded 
and the tendency is to gain dissolved gas from the surrounding liquid. 

Actually, associated with the presence of surfactants at a gas-liquid interface are 
two effects: (i) most importantly, surfactants present a barrier to mass transport, 
and (ii) surfactants reduce the surface tension (Borwankar & Wasan 1983), reflected 
in a minor change in the dynamics of bubble oscillations. Although it is generally 
accepted that certain monolayers have been shown through experiment to inhibit mass 
transport through an interface (Barnes 1986), the understanding of this phenomenon 
is somewhat limited. Theoretical efforts include the work of Whitaker & Pigford 
(1966), who assumed an interface of zero thickness but with finite capacity for the 
solute and an adsorption/desorption process at the interface. Nguyen Ly, Carbonell 
& McCoy (1979) considered an interfacial region of finite thickness with capacity 
for the dissolved gases greater than the solubility in water but with much reduced 
diffusivity. Plevan & Quinn (1966) developed an interfacial resistance model which 
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has received some theoretical justification by Borwankar & Wasan (1986). The latter 
authors do not rule out, however, the validity of the other models. Their justification is 
the leading-order solution to the microscopic equations of mass transport of Brenner 
& Leal (1982). 

Experimental determination of interfacial resistance to gas transport is complicated 
by the need to isolate interfacial resistance from the overall resistance to transport. 
Thus, the monolayer resistance must be determined by comparison of two measure- 
ments: one performed on the system with the monolayer present and one performed 
on the system without the monolayer. A detailed review of the evaporation of liquids 
and transport of gases in the presence of monolayers is given by Barnes (1986). There 
is a paucity of data that relates interfacial resistance to surface concentration of 
surfactant molecules. One exception is the work of Caskey & Barlage (1971, 1972). 
In the first paper (1971) the authors report results of dynamic surface tension versus 
surface concentration for several surfactants; in the second paper (1972) are the 
results of interfacial resistance versus surface concentration for the same surfactants. 
In reporting the predictions of the theory we shall develop, we make use of the 
interfacial resistances determined by Caskey & Barlage. 

The plan of the paper is as follows. We begin by briefly describing the formulation 
of the problem. Next we turn to an analysis of the oscillatory problem; we concentrate 
on the splitting of the boundary condition into the parts ascribed to the oscillatory 
and smooth problems. Next we give the formal solution to the smooth problem. 
Thereafter we specify the dependence of the interfacial resistance on the surface 
concentration of surfactant. Finally, we present numerical predictions of the growth 
rates of bubbles contaminated with surfactants. 

2. Formulation 
In this section we formulate the problem for dissolution or growth of a soluble, 

spherical bubble undergoing volume oscillations in response to some external forcing, 
in a liquid contaminated with surfactants. The differential equation governing the 
convection and diffusion of a dissolved gas in a liquid outside a spherically symmetric 
bubble is, in spherical polar coordinates, 

where C is the mass fraction of gas dissolved in the liquid, R2( t )R( t ) / r2  is the radial 
velocity field in the liquid associated with the bubble oscillations, D is the diffusivity 
of the gas in the liquid, and the bubble radius R is a function of time t. R(t) may 
be obtained by integration of the equations of motion of the bubble. We defer any 
specification of these equations to $7 on numerical results. The bubble is assumed 
to be created in a fluid which initially has a uniform concentration of the gas e,. 
Hence the initial condition and the far-field conditions are 

C(r,  t = 0) = C(r + co, t )  = C,. (2.2) 

In the clean surface problem, the boundary condition is developed by application of 
Henry’s law which relates the concentration of a gas in a liquid to the partial pressure 
of the gas above the liquid. In the presence of surfactants Henry’s law is no longer 
applicable. The surfactant monolayer affects the mass transfer characteristics of the 
interface, both at the microscopic and at the macroscopic level, a fact established by 
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numerous experiments (Nguyen Ly et al. 1979; Emmert & Pigford 1954; Whitaker 
& Pigford 1966; Plevan & Quinn 1966). The Henry’s law boundary condition of the 
clean surface problem is replaced by a flux boundary condition in which the non- 
equilibrium partitioning of the gas across the interface is the driving force behind 
mass transport through the surfactant monolayer. In the present analysis we employ 
the interfacial resistance model suggested by Plevan & Quinn (1966). This model 
was placed on firmer theoretical ground by Borwankar & Wasan (1986) using the 
microscopic approach of Brenner & Leal (1982). The result is that the flux through 
the interface is proportional to the difference of the surface concentration and the 
equilibrium concentration (given by Henry’s law); this is expressed mathematically as 

ar 
D 

Here p ~ ( t )  is the partial pressure of the gas and k is the (equilibrium partition) 
constant of Henry’s law. The constant of proportionality I?, measures the resistance 
of the monolayer, i.e. if i?, + 0 the clean surface problem is recovered. In general, r?, 
depends strongly on the concentration of surfactants on the interface; for the present 
we shall treat it as a general function of time, i?, = r?,(t). We develop an explicit 
form for &(t)  in 0 6 below. 

As in FS the transport problem is recast in dimensionless, Lagrangian coordinates 
to yield 

ac 1 a - - - -- ((30 + x3(z))(4’3) ”> az Paa a. 
with boundary and initial conditions 

C(a , z  = 0 )  = C(a -+ C0,z) = 0. 
The scales for non-dimensionalization are a, the radius of the undisturbed bubble, 
and fir1, the inverse natural frequency of radial oscillations of the bubble about the 
undisturbed state. The dimensionless parameters introduced are the Pkclet number 
(9 = a2i20/D), which is the ratio between the time scales for convection and diffusion; 
the dimensionless bubble radius x(z) ; and the dimensionless interfacial resistance, 
RI(Z) = k,(t 520) a52O. As explained in FS, if the initial pressure inside the bubble 
is used to non-dimensionalize Henry’s constant we get the dimensionless parameter 
Csb = pGi /k ,  which corresponds to the saturation concentration in the liquid separated 
from a gas within a spherical bubble with initial pressure P G ~ .  The dimensionless 
Lagrangian coordinate is 

We have subtracted the concentration at infinity from the concentration field, i.e. 
c = c - c,. - -  

3. Oscillatory problem 
Following FS we shall split the problem in two, in order to handle the complicated 

boundary condition. We proceed to split the time-dependent boundary condition into 
a constant and an oscillating part, making use of the linearity of the problem for the 
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concentration field. The constant part of the boundary condition is associated with 
the smooth problem (Csm) and the oscillating part of the boundary condition with the 
oscillatory problem (Cost). 

Because the convection diffusion equation for C is linear, the splitting is not unique. 
In FS we defined the splitting by requiring the solution to the oscillatory problem 
to be different from zero only in a thin layer near the bubble surface in a way that 
is uniformly valid in time. This was accomplished to leading order in the small 
parameter 9-1/2. In effect, thi!; procedure places a restriction on what part of the 
total boundary condition we can ascribe to the oscillatory solution, in order that it 
should be non-zero in only a thin layer near the bubble surface. The remainder of 
the boundary condition is satisfied by the smooth solution, which is permitted to 
be non-zero away from the bubble surface. We treat the oscillatory problem using 
the method of matched asymptotic expansions. The outer approximation to the 
solution of the oscillatory problem is identically zero by construction if we restrict 
the boundary condition of the oscillatory problem in such a way as to make the outer 
limit of the inner approximation zero. In this case, the inner approximation to the 
solution of the oscillatory problem is uniformly valid in space. 

To begin the splitting, we transform the problem (2.3) into the oscillatory form 
using (i) the nonlinear time t, developed by Plesset & Zwick (1952) and later used by 
Eller & Flynn (1965): 

t ( z )  = x4(8)df3, 

and (ii) the re-scaled Lagrangian coordinate s = 91/20. The result is 

Next we assume an expansion of the form 

1 1 
cosc  = c,s.c(s, t )  + ,,,c:sc(s, t )  + -C2,(S, 9 ?) + * * . , 

together with a similar expansion for the smooth problem, and use the binomial 
theorem to expand equation (3.1) for large 9 (small 9-'12).  To zeroth and first order 
we have 

and 

respectively. In (3.2) and (3.3) we have introduced the extra terms, C:m(~ = O,?) and 
Cim(o = 0, t )  to aid in splitting the problem. Effectively, in (3.2) and (3.3) we write 
the boundary condition of the oscillatory problem at a given order in 9-'12 as the 
full boundary condition at that order minus the boundary condition of the smooth 
problem at that order. C:m(o == O,?) and C,',(o = O , ? )  are the constant parts of 
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the boundary condition that we shall use in order to satisfy the conditions for the 
splitting. 

The next step is to ensure that the long-time asymptotic solutions (indicated by 
an overbar), C:sc and cJsc, are uniformly valid in space and do not require an outer 
expansion. This is achieved by forcing the 'outer' limit of C:sc and C:sc, i.e. as s + co, 
to be zero. As a result, the outer approximation for the oscillatory problem leads to 
a homogeneous problem with both boundary conditions and initial condition zero. 

As we shall see, the oscillatory problem contributes very little to the mass transport 
across the bubble surface. An expression for the amount of mass transfer is 

where m; is the mass of the gas in the bubble divided by the mass of liquid displaced 
by the undisturbed bubble. A more useful expression can be easily obtained from 
the differential equation for the concentration field (2.3) by two integrations: one in 
s from zero to infinity and one in 3 

mk(3) - mk(0) = - C(d,  3)da'. (3.4) lW 
3.1. Zeroth-order oscillatory problem 

The zeroth-order problem is presented in detail in FS where it was shown that the 
outer limit of the zeroth-order oscillatory problem is zero, if the average of the 
boundary condition with respect to the time 3 is zero, i.e. (C:sc(0,3))? = 0. Here the 
average ( e ) ?  is defined by 

where T is the dimensionless period of bubble oscillation. Hence the boundary 
conditions for C,",, and C:m are determined from (3.2) to be 

respectively. The asymptotic solution CtSc is very quickly approached within a few 
periods of bubble oscillation; it is easily computed using Fourier series. The result is 

x { a m c 0 ~  [m,Z -  (T)"'s] +bmsin [urn?- ( ? ) ' I 2 ~ ] } ,  (3.6) 

where a, and b, are the expansion coefficients of the boundary condition 

C:SC(~ = 0, t )  = c s b  [ Pk(t) - (Pk(t))?] 
00 

= C [am cos (om?) + 6, sin (mm+)l 
m=l 
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and 
2m.n 

0, = 7 
C)’ 

The long-time rate of mass transport is determined 
oscillatory problem c:qc does not contribute to any net 

bubbles 30 1 

from (3.4). The zeroth-order 
bubble growth or dissolution, 

because the mass transport is a periodic function of time (5) with zero mean. 

3.2. First-order oscillatory problem 
The condition for uniform validity of Cjsc (3.3) is not so straightforward to obtain 
as a consequence of the inhomogeneous term. In the Appendix we show that the 
condition for uniform validity of the oscillatory problem is 

(CLSC(S = O,?)) 0 - - A /“ (Fi(s”))qds”ds’ 

where F’ is the inhomogeneous term (forcing term) associated with ith-order oscilla- 
tory problem. The resulting condition for the C:,, problem is 

4 “  (c:sc(O, 5))z = - (- / cfsc(s’, 5)ds‘ 
x3(5)  0 

(3.7) 

Hence the parts of the total boundary conditions ascribed to C:sc and Cs’, are 
determined from (3.3) to be 

and 

respectively. The asymptotic solution cjSc is not required in the present analysis as 
our intent is to solve the smooth problem up to order 9-1’2. The solution can be 
obtained using Fourier series. 

To compute the amount of mass transfer due to the first-order oscillatory problem 
we use (3.4) and recall that the mean part of the long-time asymptotic solution cjsc 
decays exponentially as shown in the Appendix. Hence, the first-order oscillatory 
problem contributes very little to the transport, and then only in the initial stages. 

4. The smooth problem 
The smooth problem is defined by 

- ac,, = -- 1 a ((3a + x3(Z))(4’3) ”> 
a7 Paa aa 

with the boundary condition (obtained by the sum of (3.5) and (3.8)) and initial 
condition 
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Csm(O,z = 0) = Csm(o -+ 00,z) = 0. (4.2b) 

The smooth boundary condition (4.2) includes terms of order 9- ’12 and represents a 
higher-order correction to our earlier solution in FS in the case of a clean surface. In 
the clean surface problem (RI(z)  = 0) the additional term presents a small correction 
as it is multiplied by which is very small at conditions of practical interest. As 
we shall demonstrate, the correction is not small in the surfactant-covered surface 
problem because &(z) happens to be of the same magnitude as .@I2 in the physical 
problems of interest. 

The smooth problem is treated by the method of multiple scales in time. We 
introduce a second time scale A = z / Y  = tD /a2 ,  which captures the slow diffusive 
behaviour and define a second (conventional) time average with respect to the fast 
time z, 

(4.3) 

Equation (4.1) transforms to 

Next we expand 

Note that we must expand the smooth problem in powers of 92-’12 in view of 
the asymptotic sequence in the boundary condition (4.2). Upon substituting in our 
expansion for Cs, and equating coefficients of like powers of T 1 l 2 ,  we obtain a 
sequence of problems for C:m for i = 0,1,2, . . .  . We remark that the C:m - C:m 
problems decouple from C;, - C,’,. To zeroth and first order in the small parameter 
F1I2, we have the systems 

= 0, where i = 0,1, (4.4) 
9 

a7 

with boundary and initial conditions 

C:m(c = 0, A 7) = Csb ($)>(?))? - CCO, 

~f,(o,A = O,Z = 0) = csjm(a -+ co,A,z) = 0, i = 0, I. 
The solution to the zeroth- and first-order problems (4.4) is simply C:,(o,A,z) = 
C:,(CT,~), i = 0,l .  However C:, is further determined by ensuring that there is no 
secular behaviour in C:L2, lest the expansion become disordered as z increases. Hence 
we force the right-hand side of the second- and third-order problems to have zero 
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z-average (defined in (4.3)); this leads to a second equation for C;, ( i  = 0,l): 

_ .  
c;,(0) = c;,(0 = 0) 

303 

do' 

(4.5) 
- 1' ((30' + x3(t))(4/3))T - 

1 ((30 + x3(z))(4/3))T ' 

1 - 
do 

ac;, a a c;, 
- = - (( (30 + x3(1))(4'3)) b) . 

T O  

Csrn(0 )  = Csrn(0) 

do' 

- I' ((30' + x3(z))(4/3))T 

- 1 ((30 + x3(7))(4/3))T 

do 1 - m 

which is valid for any nonlinear periodic bubble oscillation. The asymptotic solution 
for the (smooth) concentration field and for the rate of mass transport up to first 

and 

10 ((30 + x3(7f4I3)) 

respectively, where Csm(0) is the threshold condition for rectified diffusion 

and C:sc is the zeroth-order asymptotic solution (3.6) of the oscillatory problem. In 
8 6 we turn to consideration of &(z) before evaluating these expressions for specific 
physical problems. 

5. Effect of surfactants on a still bubble 

(2.3) simplifies because x(z) = 1 and RI(z) is constant. At steady state, i.e. 
rate of mass transport is readily determined: 

In the absence of pressure oscillations the bubble is still; the transport problem 
= 0, the 

dm; Csb - c m  -- - -3 
dA 1 + &/9. 

Because RI is a positive number, the effect of a surfactant is to reduce mass transport 
and hence to suppress growth or dissolution. 
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When 9 is large the growth rate simplifies to 

- = -3 [Csb - C,] drnk 
dil 

which reveals two important differences between a still and an oscillating bubble. For 
the former, surfactants inhibit mass transport and their effect appears at 0 (9'-'). 
In the case of an oscillating bubble however, the effect of a surfactant appears at 
0(9-'/2) and as we show in 3 7, surfactants might enhance or reduce mass transport 
depending on the way in which RI depends on the surface concentration of the 
surfactant. 

6. Interfacial resistance 
A surfactant molecule consists of a hydrophobic and a hydrophilic portion; as a 

consequence surfactant molecules tend to accumulate at a gas-liquid interface. In a set 
of experiments of great significance to the present work, Crum (1980) demonstrated 
that the addition of small amounts of surfactant to the liquid in which a bubble was 
suspended had a very significant effect on the growth rate of the bubble by rectified 
diffusion. These were preliminary experiments ; it appears that the intentional addi- 
tion of surfactants was for the purpose of supporting speculation on the inability of 
the theory adequately to explain the large growth rates of large bubbles by rectified 
diffusion. Crum made use of a commercially available surfactant known by the trade 
name PhotoJEo 200 -which is commonly employed in photographic processing. We 
are advised that this formulated product contains a number of other, unspecified 
components in addition to the surfactant ethoxylated octylphenol (P. Schwartz 1994, 
personal communication). Moreover, there are statistical distributions of chain length 
of the hydrophobic end and of the oxyethylene hydrophilic end of the surfactants. 
The interfacial resistance properties of this product do not appear to have been char- 
acterized. Therefore it does not seem possible to compare the theoretical predictions 
we can now make regarding bubble growth rates in the presence of surfactants with 
the experimental results of Crum. Clearly this is an area to pursue in future work. 

In the present paper, we shall have to content ourselves with the development 
of theoretical predictions of bubble growth rates for surfactant systems that are 
well-characterized. We shall show that the theoretical prediction for these surfactant 
systems yields growth rates of bubbles that are significantly larger than growth rates 
for clean bubbles. 

Therefore, using experimental results by Caskey & Barlage (1971, 1972), we shall 
obtain simple expressions that relate surfactant surface concentrations with interfacial 
resistances and surface tensions for three surfactant systems. The former is needed 
for the calculation of the mass transport (4.7) and threshold (4.8) and the latter in 
the model for the dynamical equations for bubble oscillations. 

A general treatment for surfactant transport along a deforming interface presents 
a formidable task. This would require a transport equation for the bulk and surface- 
excess quantities of surfactant and a constitutive relation for non-equilibrium par- 
titioning of a soluble surfactant between interface and bulk (Edwards, Brenner & 
Wasan 1991). Assuming that the forward rate constant is much larger than the 
diffusion coefficient, this problem can be identified as the diffusion-controlled case. 
In the diffusion-controlled limit surfactant is transported slowly by diffusion through 
the bulk to the interface. In contrast, the adsorption step appears to occur instan- 
taneously; hence an equilibrium adsorption relation may be assumed - which for 
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0 '  0 '  
1 2 3 4 5 1 2 3 4 5 
pi" (x 10-l~ gmoles cm-2) p; (x 10-l~ gmoles cm-2) 

1 2 3 4 5 
pi" (x 10-l~ gmoles cm-2) 

FIGURE 1. Interfacial resistance El in s cm-I versus surfactant surface concentration pf in 
lo-'' gmolescm-2. The points correspond to the experimental data of Caskey & Barlage (1972) 
and the solid line to an exponential curve fit. The surfactants are (a) dodecyltrimethylammo- 
nium chloride ( C ~ ~ H ~ S N ( C H ~ ) ~ C ~ ) ,  ( b )  hexadecyltrimethylammonium _chloride ( C I ~ H ~ ~ N ( C H ~ ) ~ C I )  
and ( c )  dodecyl sodium sulphate (C12H25S04Na). The fits are (a) RI = 0.022 exp(1.68 p:), (b)  
l?~ = 0.13 exp(1.26 p i ) ,  ( c )  = 0.72 exp(0.36 p: ) .  

an ideal surface reduces to the Langmuir isotherm. For surface-excess concentra- 
tions much smaller than the surface-excess saturation density (which corresponds to 
the maximum realizable surface-excess density) or large adsorption coefficients the 
resulting equation for the surface concentration yields 

p S ( ~ ) x ( z ) ~  = const = p;(z = 0) 

where &(z) is the surface surfactant concentration, x(z) is the dimensionless bubble 
radius and p;(z  = 0) the initial concentration. Note that the same expression can be 
obtained by assuming the surfactant to be insoluble (Stone 1990). Finally, we note 
that RI(z) is then a function of p;(z),  or equivalently of p;(z  = O)/x(z)'. 

We shall make use of experimental results for three surfactants: 
(a )  dodecyltrimethylammonium chloride ( C I ~ H ~ ~ N ( C H ~ ) ~ C ~ ) ,  
(b)  hexadecyltrimethylammonium chloride (C16H33N( CH3)3C1) and 
(c) dodecyl sodium sulphate (C12H25S04Na). 

To obtain an expression for the interfacial resistance as a function of surface con- 
centration we developed straightforward exponential fits to the data in figure 3 of 
Caskey & Barlage (1972); this procedure seems to yield adequate approximations, as 
shown in figure 1. 
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Finally, a remark concerning the numerical results we present below is in order. 
When we make use of the experimental data of Caskey & Barlage, we take great 
care in remaining within the ranges of surfactant surface concentration at which the 
interfacial resistance is known. This implies a restriction on the amplitudes of driving 
pressure that we may consider; however, it is important to base our numerical results 
on hard evidence rather than on pure extrapolation. 

Because interfacial tension does not vary significantly with surfactant surface 
concentration we use an average value of 60 dynescm-' obtained from figure 5 of 
Caskey & Barlage (1971). 

7. Theoretical predictions of bubble growth rates 
Now we shall evaluate the expression we have developed for the growth rate 

of a surfactant-covered bubble via the mechanism of rectified diffusion. The last 
component required for the evaluation of the growth rate is the periodic bubble motion 
R( t ) .  There are numerous mathematical models for bubble oscillations as reviewed 
by Plesset & Prosperetti (1977). For rectified diffusion calculations, polytropic models 
have been used in the vast majority of studies. However, a recent comparison in 
FS showed a dramatic difference near resonance in the solution of the clean surface 
transport problem between the polytropic and a more accurate non-polytropic model. 
Consequently, in this paper, as in FS, we shall use the four-term Galerkin formulation 
of Kamath & Prosperetti (1989) in which the polytropic assumption for the bubble 
internal pressure is relaxed and thermal effects are included. This model, like the 
polytropic models, assumes that the pressure field within the bubble is uniform. 
However a spatially non-uniform temperature field is allowed. This requires solution 
of the energy equation for the gas within the bubble, which is a partial differential 
equation. 

Hence, to the bubble dynamical equations we append four ordinary differential 
equations for the amplitude coefficients of the Galerkin expansion of the temperature 
field. The pressure inside the bubble is given explicitly by an equation based on 
constant mass of gas within the bubble. These equations are given in the Appendix 
of the paper by Kamath & Prosperetti (1989). The bubble dynamical equations are 
x1 = x, 

- = x2, 
dXl 
dz 

and 

where 

1 ,  [ Pk 

pi  (no' [z + Xl/C*])  
p * = p ;  1- 

c* is the dimensionless sound speed, We denotes the Weber number and Re the 
Reynolds number. Finally, we add two more nonlinear ODES which yield the 



Dissolution or growth of oscillating bubbles 307 

oscillatory part of the background pressure that drives the bubble oscillation. The 
details are in FS. The system of eight nonlinear ODES is integrated numerically using 
the software AUTO (Doedel 1986). To ensure that the four-term Galerkin expansion 
is accurate enough we stop the calculation if one of the amplitude coefficients is not 
at least one order of magnitude less than the preceding one. For the bubble radii 
used in our calculations, i.e. 20,40 and 60 pm, we had to stop the integration at 
dimensionless pressure amplitude of 0.5. 

Following Eller (1969), the dimensional rate of growth of the equilibrium bubble 
radius is related to the mass transfer as follows: 

where &(O) is the threshold condition given by equation (4.8); & = 8314 J kmol-' 
K-' is the universal gas constant, T, = 300 K is the temperature of the liquid at the 
far field, p = 1.0 gm cmP3 is the liquid density, M = 29 kmol kg-' is the molecular 
weight of the gas and po = 1 x lo6 dynescm-* is the background pressure. 

In figures 2-4 we show plots of predicted bubble growth rates versus dimensionless 
pressure amplitude for bubbles of radius 20, 40 and 60 pm respectively. The upper 
plot in each of these figures consists of a magnification of the vertical axis near zero 
growth rate (which corresponds to the threshold for rectified diffusion). In all cases, 
the curves showing bubble growth rates correspond to dynamic surfactant surface 
concentrations within the ranges over which we know the interfacial resistance from 
the work of Caskey & Barlage. 

The solid curves show the effect of the three different surfactants on the bubble 
growth rates. As we mentioned previously, surfactants can affect bubble growth 
rates through two mechanisms : (i) reduction of interfacial tension, and (ii) interfacial 
resistance to mass transfer. Of these, the latter is the far more significant effect, 
as demonstrated in the figures where we plot the growth rates as modified by both 
mechanisms (solid curves) and by only the reduction in surface tension (long-dashed 
curves). The clean surface results are shown using the short-dashed curves. Reduction 
of surface tension contributes only a small upward shift of the growth rate curve, a 
result first noted by Crum (1980), and cannot justify the high bubble growth rates 
observed in experiments. This suggests that the 'missing physics' which accounts for 
the difference between theoretical predictions and experimental results for growth 
rates by rectified diffusion is the effect of interfacial resistance on mass transfer. This 
would appear to bear out the speculations of Crum and of Church, to which we made 
earlier reference, on the importance of surfactants to the phenomenon of rectified 
diffusion. 

It is also of considerable interest to note that surfactants are not only responsible 
for higher growth rates but might tend to favour dissolution of bubbles as one can 
see in figure 2 curve (c). This fact is further clarified by the following investigation. 
In figure 5 we show the effect of initial surface concentration of the surfactant 
hexadecyltrimethylammonium chloride (C16H33N(CH3)3C1) on bubble growth rates, 
for a bubble of radius 20 pm. There is a dramatic effect of a slight increase of 
initial surface concentration on bubble growth rates. Clearly, higher concentration 
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P2PE 
FIGURE 2. The rate of bubble growth in pm min-' versus dimensionless pressure amplitude p > / p ; .  
The solid curves correspond to (7.1) for the surfactant (a) C ~ ~ H ~ S N ( C H ~ ) ~ C ~ ,  (b )  C16H33N(CH3)3Cl 
and ( c )  ClzH25S04Na, each with initial surface concentration 2 . 9 ~  lo-'' gmolescm-2. The two 
dashed curves correspond to (7.1) with R, set to zero. The diffusivity of the gas in the liquid 
is 2.0 x lop5 cm2 SKI. The bubble is of equilibrium radius 20 pm and is driven at a frequency 
of 26.6 kHz. The interfacial tension is 60 dynescm-' except for the short-dashed curve which 
corresponds to the clean surface with interfacial tension 73 dynes cm-'. The upper plot consists 
of a magnification of the vertical axis near zero growth rate which corresponds to the threshold 
for rectified diffusion. Note that the presence of surfactant is associated with a reduction in the 
threshold pressure amplitude for rectified diffusion. 

of surfactant appears to favour growth of bubbles for this surfactant. The principal 
effect of changing the initial concentration of surfactant is to move up or down the 
exponential curve of interfacial resistance. At larger concentrations, the interfacial 
resistance changes more rapidly with concentration. This leads one to conclude that 
if the interfacial resistance versus surface concentration curve for one surfactant is 
steeper than for another, then the first surfactant will tend to promote bubble growth 
more than the second. These statements are in agreement with the predictions we 
have made thus far, and with the following. 

We shall assume a general form for the interfacial resistance 
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FIGURE 3. The rate of bubble growth in pm min-' versus dimensionless pressure amplitude p; l /pL.  

The data are the same as for figure 2 except the bubble is of equilibrium radius 40 pm. 

and investigate the effect of interfacial resistance on bubble growth rates for different 
values of the exponent a and a fixed bubble oscillation. For these calculations we use 
equation (7.1) but include only the interfacial resistance term in csm(0): 

Figure 6 demonstrates that there is a critical exponent a, for which interfacial 
resistance does not contribute to bubble growth rate, i.e. the bubble surface behaves 
like a clean surface. Interfacial resistance enhances bubble growth rates for CI > a, 
and inhibits growth rates for a < a,. 

A comparison of the magnitude of the terms in cs,,,(0) (4.8) reveals that the 
interfacial resistance term is the most significant one for bubble oscillations of practical 
interest. The fact that the first-order problem presents a significant correction to the 
zeroth-order problem does not suggest a breakdown of the perturbation scheme 
because the expansions remain well-ordered as B -+ co. Furthermore, in the second- 
order correction the resistance term, RI,  ap ears multiplied by 9'-'. Since RIB-'/* 
is of order one, then RIB-' is of order 9-' P and presents a small correction to the 
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FIGURE 4. The rate of bubble growth in pm min-’ versus dimensionless pressure amplitude p l / p k .  

The data are the same as for figures 2 and 3 except the bubble is of equilibrium radius 60 pm. 

first-order term. In contrast the first-order correction to the clean surface problem 
involves the factor F1l2 and is therefore very small. 

8. Conclusions 
We have developed a theory to explain the observed effects of surfactants on 

the problem of mass transport across the dynamic interface of a soluble spherical 
gas bubble undergoing volume oscillations in a liquid. The difference between the 
surfactant problem and the clean surface problem is that, in the former, the Henry’s 
law boundary condition is no longer applicable. Surfactants present an interfacial 
barrier to mass transport, accounted for using a flux boundary condition featuring 
interfacial resistance. 

The clean surface problem was treated to leading order in our earlier paper (FS) by 
splitting the problem into two parts: the oscillatory problem and the smooth problem. 
As in the case of the clean surface, the surfactant problem is split into the same two 
parts. The oscillatory problem is treated using the method of matched asymptotic 
expansions in a way such that the outer approximation to the oscillatory solution 
is identically zero. This serves to define the splitting in successive powers in P-1/2. 
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0 0.1 0.2 0.3 0.4 0.5 

P2P2 
FIGURE 5. The rate of bubble growth in pm min-’ versus dimensionless pressure amplitude p ; l / p k .  
The curves correspond to (7.1) for the surfactant C12H25S04Na for initial surface concentrations 2.7, 
2.9 and 3.1 x 10-lo gmoles cm-2 on a 20 pm bubble. The other data are the same as for figures 2-4. 

FIGURE 6. The rate of bubble growth in pm min-’ versus the exponent a. The curves correspond 
to (7.1) but include only the effect of interfacial resistance (see text). The bubbles considered are 
of radius 20, 40 and 60 pm (as shown), forced at a dimensionless pressure amplitude of 0.5. The 
other data are the same as for figures 2 4 .  

The oscillatory solution is valid everywhere in the liquid but differs from zero only 
in a thin layer in the neighbourhood of the bubble surface. Furthermore it does 
not contribute to bubble growth or dissolution because it accounts for only a finite 
amount of mass transfer at initial times. The smooth solution is also valid everywhere 
in the liquid and evolves via convection-enhanced diffusion which is treated by the 
singular perturbation method of multiple scales. 

To leading order, the clean surface solution is recovered. Continuing to higher 
order it is shown that the concentration field depends on RIS-”~, where RI is the 
(dimensionless) interfacial resistance due to the presence of surfactants. Although the 
influence of surfactants appears at higher order in the small parameter, surfactants 
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are shown to have a large effect on bubble growth rates owing to the fact that the 
magnitude of RI is approximately the same as the magnitude of 91'2 at conditions 
of practical interest. Hence the 'corrections' are numerically of the same magnitude 
as the leading-order, clean surface problem. This is in contrast to the case of a still, 
surfactant-covered bubble, in which corrections to the bubble growth rate due to 
surfactants are smaller by 9-'12. 

Based on experimental data of Caskey & Barlage (1971), an exponential dependence 
between interfacial resistance and surfactant surface concentration was assumed. For 
the case of diffusion-controlled surfactant transport or insoluble surfactants, the 
resistance is of the form RI K exp(a/x2(z)) where a is a constant which depends 
on the surfactant and the initial concentration and x(z) is the dimensionless bubble 
radius. It was observed that for a fixed bubble oscillation, there is a critical exponent 
(a,), which determines the effect of the surfactant on the growth rate. If a > a, 
the bubble grows more quickly (or dissolves more slowly); if a < a, the bubble 
grows more slowly (or dissolves more quickly) as a consequence of the presence of 
surfact ants. 

For the case of an oscillating bubble the enhancement of bubble growth by rectified 
diffusion when surfactants are present is predicted to be at least as significant as was 
observed in the experiments of Crum (1980). 
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Appendix. Splitting 

(cg,) leads to the following partial differential equation: 
In general the asymptotic solution to the oscillatory problem to any order i = 1,2, * . * 

with boundary condition 

c:& = 0,t)  = B' (x( t ) ,  CtLC'(S = 0, t))  , 
where F' is the inhomogeneous term associated with the ith-order oscillatory problem. 
In this Appendix, we shall determine restrictions on the boundary conditions necessary 
for the outer limit of the inner approximation of the oscillatory solution to be zero. 
In other words, we need to verify that the boundary layer solution of the oscillatory 
problem decays to zero as s -P co. 

The asymptotic solution Cg,, can be represented as a Fourier series of the form 
00 

CtSc(s,t) = C cm(s) exp [Omi 91, 
m=--00 

where 
2mn 
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Similarly I;’ and B’ can be expanded in a Fourier series with Fourier coefficients f m  

and bm respectively. This can be shown inductively for all i 2 0 beginning from i = 0 
and (3.6). 

Next we substitute these complex Fourier expansions into (Al) ;  this leads to the 
following system of ordinary differential equations for m = -a to co: 

with boundary condition 

The general solution of equation (A2) which is zero as s + co is 
Cm(S = 0) = bm. (A 3) 

Note that the exponential decay for large s of fm(s’) ameliorates the exponential 
growth of the sinh in the integrand. Finally, we use the boundary condition at s = 0 
(A 3 )  to obtain an expression for A ,  : 

A m = b m +  1 fm(s’)sinh [-(1 +i)  (T)’”s’)] ds’. (A5) 
(1 + i) (am/2) 

Equations (A 4), (A 5) give the expression for the Fourier coefficients of the asymptotic 
oscillatory problem to any order. 

The differential equation for m = 0, however, is somewhat different in view of 
0 0  = 0: 

with boundary condition 

The solution that is zero as s + co is 
C ~ ( S  = 0) = bo. 

c0(s) = 1, L fO(s”)ds” ds’. 

If we try to implement the boundary condition at s = 0 we get 

bo = Lm Lfo(s”)ds” ds’. 

In other words the inhomogeneous term of the m = 0 equation restricts the boundary 
condition that can be satisfied in order to have a solution of the oscillatory problem 
which differs from zero only near the bubble. Recognizing that bo and fo are just the 
averages (with respect to ?) of the boundary condition and the inhomogeneous term, 
we have developed the following condition, which actually defines the splitting: 

(c;,,(s = 0, t ) )  t - - Jo J, (F’(s’’));ds” ds’. 
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